
ARITHMETIC OF CHARACTERISTIC p SPECIAL L-VALUES
(WITH AN APPENDIX BY V. BOSSER)

BRUNO ANGLÈS AND LENNY TAELMAN

Abstract. Recently the second author has associated a finite Fq [T ]-module
H to the Carlitz module over a finite extension of Fq(T ). This module is an
analogue of the ideal class group of a number field.

In this paper we study the Galois module structure of this module H for
‘cyclotomic’ extensions of Fq(T ). We obtain function field analogues of some
classical results on cyclotomic number fields, such as the p-adic class number
formula, and a theorem of Mazur and Wiles about the Fitting ideal of ideal
class groups. We also relate the Galois module H to Anderson’s module of
circular units, and give a negative answer to Anderson’s Kummer-Vandiver-
type conjecture.

These results are based on a kind of equivariant class number formula which
refines the second author’s class number formula for the Carlitz module.
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1. Introduction

1.1. Let q be a prime power and A = Fq[T ] the polynomial ring in one variable T
over a finite field Fq with q elements. Let P ∈ A be monic and irreducible. The
special L-values referred to in the title are values at s = 1 of ∞-adic and P -adic
Goss L-functions associated with various characters of (A/P )×.

1.2. Let us first define the relevant ∞-adic L-values. Let k∞ = Fq((T
−1)) be the

completion of k at the place at infinity. Let F be a field extension of Fq and let
χ : (A/P )× → F× be a homomorphism. We define:

(1) L(1, χ) :=
∑

a∈A+

χ(a)

a
∈ F ⊗Fq k∞,

1
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where A+ denotes the set of monic elements of A, and where for a divisible by P
we define

χ(a) :=

{
1 if χ = 1

0 if χ 6= 1

This series converges.

1.3. For the P -adic L-values consider the completion AP = lim←−nA/P
n and a

homomorphism χ : (A/P )× → A×P . Then we define

(2) LP (1, χ) :=
∑

n≥0

∑

a∈An,+

χ(a)

a
∈ AP ,

where An,+ ⊂ A is the set of monic elements of degree n, and where this time we put
χ(a) = 0 when P divides a, for all χ. Unlike the ∞-adic case (1), the convergence
of the infinite sum (2) is not a priori obvious. However, it follows from either [6,
Lemma 3.6.7] or [1, §4.10] that the infinite sum (2), with the terms grouped as
indicated, converges in AP .

1.4. In this paper we study arithmetic properties of these special L-values. In
particular, we consider function field versions of various results about cyclotomic
number fields such as the Kummer-Vandiver problem, the theorem of Mazur and
Wiles relating the Fitting ideal of class groups to Bernoulli numbers, and the p-adic
class number formula.

1.5. Although this may not be a priori clear, the arithmetic properties encoded
by these L-values are closely related to the Carlitz module (a particular Drinfeld
module), and to the “unit module” and “class module” associated to the Carlitz
module by the second author [12, 13]. One of the principal objectives of this paper
is to relate the Galois module structure of these modules to the above special L-
values.

In the next section we recall some of the theory of the Carlitz module, and state
our main results. Along the way we fix some notation.

2. Statement of the principal results

2.1. Let A = Fq[T ]. For any A-algebra R denote by C(R) the A-module whose
underlying Fq-vector space is R, equipped with the unique A-module structure

A× C(R)→ C(R)

satisfying
(T, r) 7→ Tr + rq

for all r ∈ R. The resulting functor C from the category of A-algebras to the
category of A-modules is called the Carlitz module. It is a Drinfeld module of rank
1. See [7] for more background on Drinfeld modules and on the Carlitz module.

2.2. Let k = Fq(T ) be the fraction field of A. There is a unique power series
expCX of the form

expCX = X + e1X
q + e2X

q2 + · · · ∈ k[[X]]

such that

(3) expC(TX) = T expCX + (expCX)q.
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This power series is called the Carlitz exponential. If F is a finite extension of
k∞ = Fq((T

−1)) then the power series expC defines an entire function on F and
the functional equation (3) implies that expC defines an A-module homomorphism
expC : F → C(F ).

2.3. Now let K be a finite extension of k. Let OK be the integral closure of A in
K. Define

K∞ := K ⊗k k∞ =
∏

v|∞
Kv.

Consider the map of A-modules

∂ : C(OK)×K∞ → C(K∞), (x, γ) 7→ x− expC γ.

It is shown in [12] that the A-module

U(OK) := ker ∂

is finitely generated, and that the A-module

H(OK) := coker ∂

is finite. We identify U(OK) with the submodule of K∞ consisting of precisely
those elements whose image under expC is in C(OK).

H(OK) is an A-module analogue of the ideal class group of a number field and
U(OK) is an A-module analogue of the lattice of logarithms of units in a number
field. The exponential expC restricts to a map U(OK) → C(OK). Unlike what
happens for units in number fields, the cokernel of this map is not finite, in fact by
[10] it is not even a finitely generated A-module.

2.4. Let P ∈ A be monic irreducible and denote its degree by d. Let K be the
splitting field of the P -torsion of the Carlitz module over k. In the rest of this paper
K will denote this particular finite extension of k, associated to the fixed prime P .
K/k is an abelian extension of degree qd − 1. Its Galois group ∆ is canonically

isomorphic with (A/P )×. The extension is unramified away from P and ∞.

2.5. Our first result is a kind of equivariant class number formula, relating the
special values L(1, χ) to the A[∆]-modules H(OK) and U(OK).

To state the theorem, it is convenient to group all the L(1, χ) together in one
equivariant L-value. Let F be an extension of Fq. For a character χ : ∆→ F× let
eχ ∈ F [∆] be the corresponding idempotent:

eχ := −
∑

σ∈∆

χ(σ)−1σ.

Now assume that F contains a field of qd elements, so that every F -linear repre-
sentation of ∆ is a direct sum of one-dimensional representations. Then we define

(4) L(1,∆) :=
∑

χ : ∆→F×

L(1, χ)eχ ∈ F ⊗Fq k∞[∆].

We have that L(1,∆) lies in k∞[∆]×, and that it does not depend on F .
K∞ is free of rank one as a k∞[∆]-module, and it contains sub-A[∆]-modules

OK and U(OK).
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Theorem A. OK and U(OK) are free of rank one as A[∆]-modules and

L(1,∆) · OK = FittA[∆] H(OK) ·U(OK)

inside K∞.

This is an equivariant refinement of (a special case of) the class number formula
of [13], and our proof (see section 6) follows closely the argument of loc. cit.

2.6. For our further results we need to split H(OK) into an “odd” and an “even”
part, which we now define. Note that we have F×q ⊂ ∆ = (A/P )×. Let M be an
A[∆]-module. Then M decomposes as

M =
⊕

χ : F×
q →F×

q

M(χ)

where F×q ⊂ ∆ acts on M(χ) through the character χ. Let ω : F×q → F×q be the
tautological character x 7→ x. We define the odd part of M as

M− = M(ω)

and the even part of M as
M+ =

⊕

χ 6=ω
M(χ).

Clearly we have M = M+ ⊕M− for every A[∆]-module M . Correspondingly the
ring A[∆] factors as A[∆]+ ×A[∆]−.

The subgroup F×q of ∆ is the decomposition group at ∞ in K/k, and as such it
is analogous to the subgroup generated by complex conjugation in Galois group of
a cyclotomic extension of Q. Our use of the terms “odd” and “even” is motivated
by this analogy.

2.7. Similarly, if F is a field extension of Fq and χ : ∆ → F× a homomorphism
then we say that χ is odd if χ restricts to the identity map on F×q ⊂ ∆, and even
otherwise. If F contains a field of qd elements and M is an F [∆]-module then we
have

M =
⊕

χ : ∆→F×

eχM

and M+ and M− are the submodules obtained by restricting the direct sum to
even or odd χ respectively.

2.8. We now consider the odd part H(OK)−. We will give a formula for the Fitting
ideal of the A[∆]-module H(OK)− similar to the theorem of Mazur-Wiles [8, p. 216,
Theorem 2] relating the p-part of the class group of Q(ζp) to generalized Bernoulli
numbers. However, we give a full description of the Fitting ideal, not only of its
P -part.

In §5 we will see that OK is free of rank one as an A[∆]-module. Let η be a
generator of OK as A[∆]-module and let λ ∈ OK be a non-zero P -torsion element
of C(OK). Let F be a field containing Fq and χ : ∆→ F× a homomorphism. Then
there is a unique B1,χ ∈ F ⊗Fq k such that

eχλ
−1 = B1,χeχη

in F ⊗Fq K.



ARITHMETIC OF CHARACTERISTIC p SPECIAL L-VALUES 5

Theorem B. Let F be a field containing Fq and let χ : ∆→ F be an odd character.
Consider the ideal I = Fitt eχ(F ⊗Fq H(OK)) in F ⊗Fq A. Then

(1) I = (1) if χ = 1 (and then q = 2);
(2) I = ((T − χ(T ))B1,χ−1) if χ extends to a ring homomorphism A/P → F ;
(3) I = (B1,χ−1) otherwise.

Note that B1,χ depends on the choice of λ and η, but only up to a scalar in F×.
In §5 we will single out for each χ a particular B1,χ, independent of choices. We
will call these generalized Bernoulli-Carlitz numbers.

2.9. For all positive integers n we define BC′n ∈ k by the power series identity
X

expCX
=
∑

n≥0

BC′nX
n.

These BC′n are (up to a normalisation factor) the Bernoulli-Carlitz numbers intro-
duced by Carlitz, who related them to certain Goss zeta values. In §8 we establish
congruences relating the B1,χ to Bernoulli-Carlitz numbers and use these to obtain
a new proof of the Herbrand-Ribet theorem of [14]:

Theorem C. Let ω : ∆→ (A/P )× be the tautological character. Let 1 < n < qd−1
be divisible by q − 1. Then

eω1−n(A/P ⊗A H(OK)) 6= 0

if and only if vP (BC′n) > 0.

2.10. We have no complete description of the Fitting ideal of the even part H(OK)+,
but give a kind of P -adic class number formula involving the P -part of H(OK)+.
To state this formula, we need to consider a P -adic version of the module U .

Let OK,P be the completion of OK at the unique prime above P ∈ A. Let m
be the maximal ideal of OK,P . Note that the subgroup m of OK,P is stable under
the Carlitz A-action. We denote the resulting A-module by C(m) ⊂ C(OK,P ). The
A-action extends uniquely to a continuous AP -module structure on C(m). Now let
U be the image of U(OK) in C(OK) and let Ū be the topological closure of U∩C(m)
inside C(m). Then Ū is a sub-AP [∆]-module of C(m).

2.11. The residue field AP → A/P has a canonical section, giving AP the structure
of an A/P -algebra. In particular, every AP [∆]-module M decomposes as

M =
⊕

χ

eχM

where χ runs over all homomorhpisms χ : ∆ → A×P , and where eχ ∈ AP [∆] is
the idempotent associated to χ. We call a homomorphism χ : ∆ → A×P odd if its
restriction to F×q is the inclusion map F×q ⊂ A×P , and even otherwise.

Theorem D. Let χ : ∆→ A×P be even. Then

lengthAP eχ (AP ⊗A H(OK)) + lengthAP eχ
C(m)

Ū = vP (LP (1, χ)).

It is not a priori clear that eχ(C(m)/Ū) is finite and that LP (1, χ) 6= 0, but using
a P -adic Baker-Brumer theorem of Vincent Bosser (see the appendix) we show the
following Leopoldt-type result:

Theorem E. If χ : ∆→ A×P is even then eχŪ 6= 0 and LP (1, χ) 6= 0.
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We also show that LP (1, χ) = 0 for odd χ.

2.12. An important ingredient in the proof of Theorem D is Anderon’s module L
of special points [1]. This is a finitely generated submodule of C(OK), constructed
through explicit generators. It is a Carlitz module analogue of the group of circular
units (also known as cyclotomic units) in cyclotomic number fields. We refer to
section 7 for the definition.

Recall that U is the image of U(OK) in C(OK). In §7 we will show

Theorem F. The divisible closure of L in C(OK) is U , the quotient U/L is finite
and we have

FittA[∆] U/L = FittA[∆] H(OK)+.

As in the classical case, we do not expect U/L and H(OK)+ to be isomorphic
A[∆]-modules in general.

2.13. Motivated by the Kummer-Vandiver conjecture, Anderson had conjectured
[1, §4.12] that the P -torsion of U/L is trivial, and we now see that this is equivalent
with the statement that H(OK)+ has trivial P -torsion. Recently we have found
examples where the the latter does not hold [3], and we therefore conclude that
also Anderson’s conjecture is false. For example:

Theorem G. Let q = 3 and P = T 9−T 6−T 4−T 3−T 2 + 1 in F3[T ]. Then U/L
has non-trivial P -torsion.

3. A[∆]-modules

3.1. Let P ∈ A be an irreducible element of degree d, and let ∆ = (A/P )×. In this
section we collect some elementary facts on the structure of A[∆]-modules, and fix
some notation.

Note that Fq[∆] =
∏
i Fi for some finite field extensions Fi/Fq. As a consequence

we have A[∆] =
∏
i Fi[T ]. In particular A[∆] is a principal ideal ring.

3.2. If M is a finite A[∆]-module then there are ideals I1, . . . , In such that

M ∼= A[∆]/I1 ⊕ · · · ⊕A[∆]/In.

The Fitting ideal of M is the ideal

FittA[∆]M := I1 · · · In.
3.3. Every ideal I of finite index in A[∆] has a unique normalized generator f
such that for every i the component fi ∈ Fi[T ] of f is monic. If M is a finite
A[∆]-module then we denote by [M ]A[∆] this normalized generator of FittA[∆]M .

3.4. Let F be an extension of Fq and χ : ∆→ F× a homomorphism. Consider the
element

eχ := −
∑

σ∈∆

χ−1(σ)σ ∈ F [∆]

Then eχ is an idempotent and σeχ = χ(σ)eχ for all σ ∈ ∆.

3.5. Let F be a field containing a field of qd elements. Then the ring F ⊗Fq A[∆]
factors as

F ⊗Fq A[∆] =
∏

χ : ∆→F×

(F ⊗Fq A)eχ
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where eχ is the idempotent corresponding to the character χ. If M is an A[∆]-
module, then we have a decomposition

F ⊗Fq M =
⊕

χ

eχ(F ⊗Fq M).

3.6. Let F be an extension of Fq containing a field of qd elements and let Frob: F →
F be the q-Frobenius x 7→ xq. Then for an

α =
∑

α(χ)eχ ∈ F ⊗Fq A[∆]

with α(χ) ∈ F ⊗Fq A for all χ we have that α lies in A[∆] if and only if

α(χq) = (Frob⊗ id)α(χ)

for all χ.

3.7. Let V be a k∞[∆]-module which is free of rank one. An A[∆]-lattice Λ in V is a
sub A[∆]-module Λ ⊂ V , free of rank one. If Λ1 and Λ2 are A[∆]-lattices in V then
there is an f ∈ k∞[∆] so that Λ2 = fΛ1. Moreover, this f is unique if we normalize
it analoguously to 3.3, by demanding that for every i its component fi ∈ Fi((T−1))
has leading coefficient 1. We denote this normalized f by [Λ1 : Λ2]A[∆].

4. Elementary properties of the cyclotomic function field K

In this section we collect some elementary facts about the field extension K/k
and about the Carlitz module over K. We refer to [11, §12] and [7, §3] for the
proofs.

4.1. Recall that K denotes the spliting field of the P -torsion of the Carlitz module
over k, and ∆ = Gal(K/k). We have C[P ](K) ∼= A/P and the canonical map

ω : ∆→ AutA C[P ](K) = (A/P )×

is an isomorphism, which we use to identify ∆ with (A/P )×.
The field of constants of K is Fq. The extension K/k is unramified away from

P and ∞. For a monic irreducible f ∈ A which is coprime with P we have that
ω(Frob(f)) = f̄ ∈ (A/P )×. The prime P is totally ramified in K/k.

4.2. Let λ ∈ K be a generator of C(K)[P ]. Then λ is integral over A, so λ ∈ OK .
We have OK = A[λ]. Moreover, λ is a generator of the unique prime ideal of OK
that lies above (P ).

4.3. Let ka∞ be an algebraic closure of k∞. Then the exponential map defines a
short exact sequence

0 −→ Aπ̄ −→ ka∞
expC−→ C(ka∞) −→ 0

with

π̄ =
(
q−1
√
−T
)q ∞∏

n=1

(
1− T 1−qn

)−1

∈ k∞( q−1
√
−T )

for any choice of (q − 1)-st root of −T . The field k∞(π̄) has degree q − 1 over k∞.
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4.4. The element
λ = expC(π̄/P ) ∈ k∞(π̄)

is a generator of C[P ](ka∞). Since K = k(λ) has degree qd − 1 over k, we find that
there are (qd − 1)/(q − 1) places above ∞ in K and for each such place v we have

Kv
∼= k∞(λ) = k∞(π̄).

4.5. Let Λ be the kernel of expC : K∞ → C(K∞). Then we have a short exact
sequence

0 −→ Λ −→ U(OK)
expC−→ U −→ 0.

By 4.3 and 4.4 we have that the A-module Λ is free of rank (qd − 1)/(q − 1) and
U(OK) is free of rank qd − 1.

4.6. The Galois group of the Kummer extension k∞(π̄)/k∞ is naturally isomor-
phic to F×q , and acts on λ = expC(π̄/P ) ∈ k∞(π̄) via the tautological character
id : F×q → F×q . We conclude that the subgroup F×q ⊂ ∆ is both the inertia group
and decomposition group at ∞. We also see that Λ = Λ−.

4.7. Let Q ∈ A be the largest multiple of P so that (A/Q)× = (A/P )×. Then we
have

C(OK)tors = C(K)tors = C(K)[Q] ∼= A/Q

and
C(OK)−tors = C(OK)tors.

An easy computation shows that Q = P if q > 2 and that Q is the least common
multiple of P and T (T + 1) if q = 2.

5. Gauss-Thakur sums and generalized Bernoulli-Carlitz numbers

5.1. Fix a generator λ ∈ K of the P -torsion of the Carlitz module. Let F be a
field extension of Fq and χ : ∆→ F× a homomorphism.

Let F̄ be an algebraic closure of F and ω1, . . . , ωd the d distinct Fq-embeddings
of the field A/P in F̄ . Then χ can be uniquely written as

χ = ωs11 · · ·ωsdd
with 0 ≤ si ≤ q− 1 for all i and not all si equal to q− 1. Note that if we order the
ω’s so that ωi = ωqi−1 for all i and if χ = ωn1 with 0 ≤ n < qd − 1 then the si are
the q-adic digits of n.

The Gauss-Thakur sum [15] associated with χ is defined as follows:

(5) τ(χ) =

d∏

i=1

(
−
∑

δ∈∆

ωi(δ)
−1 ⊗ δ(λ)

)si
∈ F̄ ⊗Fq OK .

One verifies that τ(χ) ∈ F ⊗Fq OK . Note that we have

τ(χ) =
d∏

i=1

τ(ωi)
si .

We summarize the basic properties of these Gauss-Thakur sums:

Proposition 5.2. Let F be an extension of Fq and χ : ∆→ F× a homomorphism.
Then

(1) τ(χ) ∈ eχ(F ⊗Fq OK);
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(2) if χ 6= 1 then τ(χ)τ(χ−1) = (−1)dP ;
(3) τ(1) = 1.

Proof. See [2, §2]. �

5.3. In particular, the proposition tells us that τ(χ) is nonzero. Since eχ(F ⊗FqK)
is free of rank one over F ⊗Fq k, we find that there is a unique B1,χ ∈ F ⊗Fq k such
that

eχ
1

λ
= B1,χτ(χ)

in F ⊗Fq K. We will refer to these B1,χ as generalized Bernoulli-Carlitz numbers.

5.4. For the trivial character χ = 1 we have

B1,1 = eχ
1

λ
= − trK/k

1

λ
.

Since the group F×q acts freely on the set of conjugates of 1/λ, we see that B1,1 = 0
if q > 2. If q = 2 then we have

B1,1 =
P + 1

T 2 + T
.

This follows from the easily proven fact that for any Q ∈ F2[T ] different from zero
the Q-torsion of C is defined by a polynomial of the form

ϕQ(X) = QX +
Q2 +Q

T 2 + T
X2 + · · ·+X2degQ

in k[X].

5.5. Now let F/Fq be an extension containing a field of qd elements and consider

η =
∑

χ

τ(χ) ∈ F ⊗Fq OK

and
B1 =

∑

χ

B1,χeχ ∈ F ⊗Fq k[∆],

where the sums range over all homomorphisms ∆ → F×. Then we have η ∈ OK
and B1 ∈ k[∆]. They are related by the identity λ−1 = B1η.

Theorem 5.6. OK = A[∆]η.

Proof. See [2, Théorème 2.5] or [5]. �

6. ∞-adic equivariant class number formula

In this section we prove Theorem A. The proof follows very closely the proof of
the special value formula in [13], and rather than copying the whole proof, we give
an overview of the argument, while treating in detail those parts that are different.

6.1. We start by giving an Euler product formula for the equivariant L-value
L(1,∆) defined in (4). If m is a maximal ideal of A then both OK/mOK and
C(OK/mOK) are finite A[∆]-modules so we can consider the normalized genera-
tors [OK/mOK ]A[∆] respectively [C(OK/mOK)]A[∆] of their Fitting ideals, see 3.3.

Similarly, if F is an extension of Fq and M a finite F ⊗Fq A-module then we
denote by [M ]F⊗FqA

∈ F ⊗Fq A = F [T ] the unique monic generator of the Fitting
ideal of M .
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Proposition 6.2. Let F be an extension of Fq and χ : ∆→ F× a homomorphism.
Let m ⊂ A be a maximal ideal, with monic generator f . Then we have

[
eχ(F ⊗FqC(OK/mOK))

]
F⊗FqA

= f(T )− χ(T ).

Proof. Without loss of generality we may assume that F is algebraically closed. We
need to show that

detF [Z]

(
Z − T − τ | eχ

(
F ⊗Fq

OK
fOK

)
[Z]

)
= f(Z)− χ(f),

where τ is the F [Z]-linear map induced by the map OK → OK , x 7→ xq. The
module

M := eχ

(
F ⊗Fq

OK
fOK

)

is free of rank one over F ⊗Fq A/fA
∼= Fn, with n = deg f .

The F -linear action of τ on M permutes the n components cyclically. If f is
coprime with P then we have that τn is the reduction of the Frobenius at f , hence
τn acts as χ(f) on M . If f = P then OK/fOK ∼= (A/P )[ε]/εq

d−1 where τd acts as
the identity on A/P and τd(ε) = 0, so we find that τn acts on M as

χ(f) =

{
0 if χ 6= 1

1 if χ = 1

The action of T on M is diagonally by (t1, · · · , tn) ∈ Fn where the ti ∈ F are the
roots of f(T ).

Combining these descriptions of the actions of T and τ we find that the charac-
teristic polynomial of T + τ acting on M is f(Z)−χ(f), what we had to prove. �

By the Euler product formula

L(1, χ) =
∏

f

(
1− χ(f)

f

)−1

with f running over the monic irreducible elements of A we conclude:

Corollary 6.3. The infinite product

∏

m

[
OK/mOK

]
A[∆][

C(OK/mOK)
]
A[∆]

with m ranging over the maximal ideals of A, converges in k∞[∆] to L(1,∆). �

6.4. Next we need a slight generalization of the trace formula of [13, §3]. Let F
be a finite extension of Fq. Let M be a free F ⊗Fq A-module of finite rank. Let
τ : M → M be an Fq-linear map such that τ((x ⊗ a)m) = (x ⊗ aq)τ(m) for all
x ∈ F , a ∈ A and m ∈M .

Let Ψ be a power series
Ψ =

∑

i,j≥1

aijτ
iZ−j

with aij ∈ A for all i, j, such that for all j there are only finitely many i with
aij 6= 0. In other words, the coefficient of Z−j is a polynomial in τ .
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Then for every maximal ideal m of A there is an obvious F [[Z−1]]-linear action
of Ψ on F [[Z−1]]⊗F (M/mM). Also, there is a natural F [[Z−1]]-action of Ψ on the
compact F [[Z−1]]-module

F [[Z−1]]⊗̂F
k∞ ⊗AM

M
=




∑

i≥0

miZ
−i : mi ∈

k∞ ⊗AM
M





This endomorphism is nuclear in the sense of [13, §2], so we can take the determi-
nant of 1 + Ψ acting on this compact module.

Proposition 6.5. The infinite product
∏

m

detF [[Z−1]]

(
1 + Ψ |F [[Z−1]]⊗F

M

mM

)−1

,

where m runs over the maximal ideals of A, converges to

detF [[Z−1]]

(
1 + Ψ |F [[Z−1]]⊗̂F

k∞ ⊗AM
M

)
.

Proof. The only difference with the formula of [13, §3] is that we deal with a q-
Frobenius but with F -linear determinants for various finite extensions F/Fq. How-
ever, the proof of this generalization is identical to the proof in [13]. �

Put

Θ =
1− (T + τ)Z−1

1− TZ−1
− 1 = −

∞∑

n=1

τTn−1Z−n.

Applying the proposition with Ψ = Θ andM = eχ(F⊗FqOK) for every χ : ∆→ F×

we get:

Proposition 6.6. We have

L(1,∆) = detFq [∆][[Z−1]]

(
1 + Θ | Fq[[Z−1]]⊗̂Fq

K∞
OK

)
∣∣Z=T

in k∞[∆] = Fq[∆]((T−1)). �
We can now apply the same reasoning as in section §5 of [13]:

Proof of Theorem A. The exponential map induces a short exact sequence of com-
pact Fq[∆]-modules

0→ K∞
U

exp→ K∞
OK

→ H(OK)→ 0.

After the choice of a splitting, we obtain an isomorphism

γ :
K∞
U
×H(OK)→ K∞

OK
.

Since the map exp is infinitely tangent to the identity (in the sense of §4 of [13]),
and since

1 + Θ =
1− γTγ−1Z−1

1− TZ−1

we conclude using [13, Theorem 4] that
(

1 + Θ | Fq[[Z−1]]⊗̂Fq

K∞
OK

)
∣∣Z=T

=
[
H(OK)

]
A[∆]

[
OK : U(OK)

]
A[∆]
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which proves the theorem. �

7. Cyclotomic units

This section is based on Anderson’s fundamental paper [1], in which he explicitly
constructed a finitely generated submodule of C(OK) and related it to the special
values L(1, χ) and LP (1, χ). We bypass some of Anderson’s proofs by using the
equivariant class number formula of the preceding section.

7.1. Let λ ∈ K be a generator of the P -torsion of the Carlitz module. For all
m ≥ 0 define

(6) Lm :=
∑

σ∈∆

σ(λ)m
∑

a∈A+,σ

1

a
∈ K∞

where A+,σ is the set of monic elements of A that are congruent to σ in A/P . Let
M ⊂ K∞ be the A-module generated by all the Lm.

Proposition 7.2. For all σ ∈ ∆ we have σM = M.

Proof. Let σ ∈ ∆ and m ≥ 0. We need to show that σLm ∈ M. We have
σ(λm) ∈ OK = A[λ], hence there are ai ∈ A so that σ(λm) =

∑
aiλ

i. But then we
have σ(Lm) =

∑
aiLi ∈M, as desired. �

Proposition 7.3. Let F be a field extension of Fq and χ : ∆ → F× a homomor-
phism. Then we have

eχ(F ⊗Fq M) = L(1, χ) · eχ(F ⊗Fq OK)

as sub-F ⊗Fq A-modules of eχ(F ⊗Fq K∞).

Proof. For σ ∈ ∆ we have

eχσ(λ)m = χ(σ)eχλ
m

hence

eχLm =


∑

σ∈∆

∑

a∈A+,σ

χ(σ)

a


 eχλ

m = L(1, χ)eχλ
m.

In particular, we have that eχ(F ⊗Fq M) is generated by

(7) {L(1, χ)eχλ
m : m ≥ 0} ⊂ eχ(F ⊗Fq K∞)

as an F⊗FqA-module. BecauseOK = A[λ] (see 4.2) we also have that eχ(F⊗FqOK)
is generated by

(8) {eχλm : m ≥ 0} ⊂ eχ(F ⊗Fq K∞)

as an F ⊗Fq A-module. Comparing the generating sets (7) and (8) we obtain the
proposition. �

Assembling the isotypical components together we obtain

Theorem 7.4. M = L(1,∆) · OK as A[∆]-submodules of K∞. �
In particular we have:

Corollary 7.5. M is free of rank one over A[∆]. �
Comparing Theorems A and 7.4 leads to:
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Corollary 7.6. M ⊂ U(OK) and the A[∆]-modules H(OK) and U(OK)/M have
the same Fitting ideal. �

Finally we see that exponentiating the generators of M indeed yields integral
points on the Carlitz module:

Corollary 7.7. expM ⊂ U . �

8. Odd part of H(OK)

8.1. Fix a place v of K above ∞ and a generator π̄ ∈ Kv of the kernel of
expC : Kv → C(Kv). Put λ = expC(π̄/P ). Then λ lies in K ⊂ Kv and is a
generator of C[P ](K).

Proposition 8.2. Let F be a field containing Fq and let χ : ∆ → F× be odd. If
χ 6= 1 then

L(1, χ) =
π̄B1,χ−1τ(χ−1)

P
in F ⊗Fq Kv. If χ = 1 then q = 2 and

L(1, χ) =
π̄

T 2 + T

in F ⊗Fq k∞.

If χ extends to a ring homomorphism A/P → F then a similar formula for
L(1, χ) has been obtained by Pellarin [9, Corollary 2].

Proof of Proposition 8.2. Take the logarithmic derivative of both sides in the prod-
uct expansion

expC X = X
∏

a∈A\{0}

(
1− X

aπ̄

)

in Kv[[X]] to find
1

expC X
=

1

X
+

∑

a∈A\{0}

1

X − aπ̄ =
∑

a∈A

1

X + aπ̄
.

Let b ∈ A be coprime with P and denote by σb its image in ∆. Substituting
X = b

P π̄ we obtain

(9)
1

σb(λ)
=
∑

a∈A

1

(a+ b
P )π̄

=
P

π̄

∑

a≡b (P )

1

a
.

Now assume χ 6= 1. Multiplying both sides in (9) with χ(b) and summing over
all classes of b in ∆ = (A/P )× we find

eχ−1

1

λ
= −P

π̄

∑

a∈A

χ(a)

a
=
P

π̄

∑

a∈A+

χ(a)

a
= L(1, χ)

P

π̄

in F ⊗Fq Kv, where in the middle equality we have used that χ is odd. By 5.3 we
conclude

B1,χ−1τ(χ−1) = L(1, χ)
P

π̄
in F ⊗Fq Kv, what we had to prove.
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If χ = 1 then summing (9) over all b gives

trK/k
1

λ
=
P

π̄
L(1, χ)

P − 1

P

(the last factor compensates for the extra Euler factor at P in L(1, χ)). Using 5.4
we conclude L(1, χ) = π̄/(T 2 + T ), as claimed. �

8.3. Let v and π̄ ∈ Kv be as in 8.1. Let

π̄v = (0, . . . , 0, π̄, 0, . . . 0) ∈ K∞
be the image of π̄ under the inclusion Kv → K∞.

Proposition 8.4. Λ is a free rank one A[∆]−-module, generated by π̄v.

Proof. Clearly Λ is generated by {σ(π̄v) : σ ∈ ∆} as an A-module, and since Λ+ = 0
(see 4.6) we find that Λ = A[∆]−π̄v. Both Λ and A[∆]− are free of rank (qd−1)/(q−
1) over A so we conclude that Λ is the free A[∆]−- module generated by π̄v. �

Proposition 8.5. If χ : ∆→ F× is odd and χ 6= 1 then

L(1, χ)eχ(F ⊗Fq OK) = B1,χ−1eχ(F ⊗Fq Λ)

in F ⊗FqK∞.

Proof. Both sides are free F ⊗Fq A-modules of rank one. The left-hand-side is
generated by

L(1, χ)τ(χ) ∈ F ⊗Fq K∞
and by Proposition 8.4 the right-hand-side is generated by

B1,χ−1eχπ̄v ∈ F ⊗Fq K∞.

Let α be the quotient of these generators:

α :=
B1,χ−1eχπ̄v

L(1, χ)τ(χ)
∈ (F ⊗Fq K∞)×.

We need to show α ∈ F×. Since α is ∆-invariant, we have α ∈ F ⊗Fq k∞ and it
suffices to show that the v-component αv of α is in F×. Using that χ is odd we
find

αv =
B1,χ−1 π̄

L(1, χ)τ(χ)
∈ F ⊗Fq Kv,

and by Proposition 8.2

αv =
P

τ(χ−1)τ(χ)
.

Using Proposition 5.2 we conclude αv = (−1)d and therefore α ∈ F×. �

Lemma 8.6. U− = Utors = C(OK)tors.

Proof. By 4.5 we obtain a short exact sequence of A[∆]−-modules

0→ Λ→ U(OK)− → U− → 0

and since U(OK) is free of rank one over A[∆], we find that Λ and U(OK)− have
the same A-rank. We conclude that U− is torsion. Since Λ+ = 0, the module U+

is torsion-free, so U− = Utors. In [12, Prop. 2] it is shown that C(OK)tors ⊂ U , so
we conclude Utors = C(OK)tors. �

We can now prove Theorem B:
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Theorem 8.7. Let F be a field containing Fq and let χ : ∆ → F be an odd char-
acter. Consider the ideal I = Fitt eχ(F ⊗Fq H(OK)) in F ⊗Fq A. Then

(1) I = (1) if χ = 1 (and then q = 2);
(2) I = ((T − χ(T ))B1,χ−1) if χ extends to a ring homomorphism A/P → F ;
(3) I = (B1,χ−1) otherwise.

Proof. Let S denote the set of χ : ∆ → F× that extend to a ring homomorphism
A/P → F .

The equivariant class number formula (Theorem A) says that

(10) L(1, χ)τ(χ) F ⊗FqA = I · eχ(F ⊗FqU(OK))

in F ⊗Fq K∞. The preceding lemma gives us a short exact sequence

0→ Λ→ U(OK)− → C(K)tors → 0,

from which we get

eχ(F ⊗FqU(OK))) =





(T 2 + T )−1eχ(F ⊗FqΛ) if χ = 1,

(T − χ(T ))−1eχ(F ⊗FqΛ) if χ ∈ S,
eχ(F ⊗FqΛ) otherwise.

If χ 6= 1 then the theorem follows from (10) and Proposition 8.5. If χ = 1 then (10)
gives

L(1, χ)A = I(T 2 + T )−1π̄

in k∞, and the theorem follows from Proposition 8.2. �

8.8. Next we will prove congruences modulo P between the generalized Bernoulli-
Carlitz numbers B1,χ and the usual Bernoulli-Carlitz numbers BCn. We then use
these congruences to give a new proof of the Herbrand-Ribet theorem of [14], based
on Theorem 8.7.

8.9. Let n be a non-negative integer with q-adic expansion

n = n0 + n1q + n2q
2 + · · · , 0 ≤ ni < q.

For all i ≥ 0 let

Di =
i−1∏

j=0

(T q
i − T qj ).

The n-th Carlitz factorial Π(n) is defined to be

Π(n) :=
∏

i≥0

Dni
i ∈ A.

Note that vP (Π(n)) = 0 for all n < qd.

8.10. For all n ≥ 0 the Bernoulli-Carlitz numbers BCn ∈ k are defined by the
power series identity

X

expX
=
∑

n≥0

BCn
Xn

Π(n)
∈ k[[X]].
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8.11. Convention. The completions kP and OK,P are naturally A/P -algebras. We
have a canonical idenfitication

Hom(∆, (A/P )×) = Hom(∆, A×P ).

For a χ : ∆ → (A/P )× we will denote by B1,χ and τ(χ) the images of B1,χ and
τ(χ) under the natural maps

A/P ⊗Fq k → kP

and
A/P ⊗Fq OK → OK,P

respectively.

Proposition 8.12. Let n be an integer with 0 ≤ n < qd − 1. Then in OK,P we
have the congruence

τ(ωn) ≡ λn

Π(n)
(mod mn+1).

Proof. Writing n in its q-adic expansion, we see from the definitions of τ(ωn) and
Π(n) that it suffices to prove

τ(ωq
i

) ≡ λq
i

Di
(mod mq

i+1)

for all i satisfying 0 ≤ i < d. This is shown in [15, Theorem VI]. Note that Thakur’s
notation is different from ours. His λ is congruent to our λ modulo m2, but not
necessarily the same (see [15, Lemma II]). Also note that there is a typo in the
proof of Theorem VI of loc. cit.: the left-hand side of the displayed formula should
be gj/λq

j

rather than gj/λq
h

. �

Theorem 8.13. If n 6= 1 and 0 < n ≤ qd − 1 then B1,ω−n ∈ AP and

B1,ω−n ≡ Π(qd − 1− n)

Π(qd − n)
BCqd−n

modulo P .

Proof. (Compare with §8 of [14].) Consider the exponential power series

expCX = X + e1X
q + · · · ∈ k[[X]].

The coefficients e1, · · · , ed−1 are P -integral, so we can construct the truncated re-
duced exponential

expCX = X + e1X
q + · · ·+ ed−1X

qd−1 ∈ (A/P )[[X]]/(Xqd).

This defines a map expC : m/mq
d → m/mq

d

which is an isomorphism since it induces
the identity map on the intermediate quotients mi/mi+1.

Put β̄ := exp−1
C λ and let β ∈ m be a lift of β̄. Then we have

(11)
1

λ
≡
qd−1∑

n=0

BCn
Π(n)

βn−1 (mod mq
d−1).

Moreover, by [14, Lemma 4] we have for n,m ∈ {0, . . . , qd − 2}

eωnβ
m ≡ 0 (mod mq

d

) if n 6= m
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and
eωnβ

m ≡ βm (mod mq
d

) if n = m.

Applying eω−n = e
ωqd−1−n to (11) we obtain

eω−nλ−1 ≡ BCqd−n
Π(qd − 1− n)

βq
d−1−n (mod mq

d−1)

and therefore

τ(ωn)B1,ω−n ≡ BC′qd−n β
qd−1−n (mod mq

d−1).

Together with Proposition 8.12 this proves the Theorem. �
If we combine Theorem 8.7 with the congruence of Theorem 8.13 we obtain a

new proof of the Herbrand-Ribet theorem of [14]:

Theorem 8.14. Let 1 < n < qd − 1 be divisible by q − 1. Then

eω1−n(A/P ⊗Fq H(OK))

is non-zero if and only if vP (BCn) > 0.

Proof. Passing from A to AP in Theorem 8.7 and splitting out character by char-
acter we find

(12) lengthAP eχ(AP ⊗A H(OK)) = vP (B1,χ−1) + lengthAP eχC(K)tors

for all odd χ : ∆→ A×P .
Recall from 4.7 that C(OK)tors

∼= A/Q with

Q =

{
P if q = 2

lcm(P, T (T + 1)) if q > 2
,

where the action of ∆ = (A/P )× = (A/Q)× on A/Q is the tautological one. In
particular, AP ⊗A C(K)tors = A/P and

(13) eχAP ⊗A C(K)tors
∼=
{
A/P if χ = ω

0 if χ 6= ω

for all χ : ∆→ A×P .
Combining (12) and (13) we find

lengthAP eχ(AP ⊗A H(OK)) = vP (B1,χ−1)

for all even χ : ∆→ A×P , different from ω. Now by Theorem 8.13 we have

vP (Bω1−n) > 0⇐⇒ vP (BC′n) > 0,

which concludes the proof. �

9. Even part of H(OK)

9.1. Let L ⊂ C(OK) be the image of M in C(OK) and
√
L its divisible closure in

C(OK), that is,
√
L = {m ∈ C(OK) : ∃a ∈ A \ {0} such that am ∈ L} .

Proposition 9.2.
√
L = U .

Proof. See the remark after [12, Prop. 2]. �
Theorem 9.3. FittA[∆] U/L = FittA[∆] H(OK)+.
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Proof. The minus-part of the short exact sequence of A[∆]-modules

0→M ∩ ker expC →M→ L → 0

is the short exact sequence

0→M ∩ ker expC →M− → C[P ](K)→ 0.

Similarly, the minus-part of the short exact sequence

0→ ker expC → U(OK)→ U → 0

is the short exact sequence

0→ ker expC → U(OK)− → C[P ](K)→ 0.

Comparing both, we find

FittA[∆]
U
L = FittA[∆]

U+

L+
= FittA[∆]

U(OK)+

M+
.

The ideal on the left equals FittA[∆]

√
L/L by Proposition 9.2, and the ideal on the

right equals FittA[∆] H(OK)+ by Corollary 7.6. �

In [3] we have shown that AP ⊗A H(OK)+ is not always trivial, unlike what one
may expect by analogy with the Kummer-Vandiver conjecture. Combining this
with Theorem 9.3 we conclude

Corollary 9.4. There exist prime powers q and monic irreducible P ∈ Fq[T ] so
that

√
L/L has nontrivial P -torsion. �

This settles Anderson’s conjecture [1, §4.12] in the negative. For example, the
prime

P = T 9 − T 6 − T 4 − T 3 − T 2 + 1 ∈ F3[T ]

gives a counterexample [3].

9.5. We now turn our attention to P -adic units. Let U be the image of U(OK) in
C(OK,P ) and put

U ′ := U ∩m.

Then U ′ is a sub-A-module of finite index in U . We denote by Ū the closure of U ′
in C(OK,P ). This is an AP -module. The natural map

α : AP ⊗A U ′ → Ū
is surjective. We will now show that α is an isomorphism, a statement analogous
to Leopoldt’s conjecture for cyclotomic number fields (a theorem by Brumer [4]).
The main point of the argument is a result on linear independence of P -adic Carlitz
logarithms, which is shown by Vincent Bosser in an appendix to this paper.

Theorem 9.6. α is an isomorphism.

Corollary 9.7. Ū is free of rank one over AP [∆]+. �

Proof of Theorem 9.6. For all χ : ∆→ (A/P )× which are even, we show that Ū(χ)
is free of rank one over AP .

The Carlitz exponential defines an isomorphism of AP -modules

expC : m→ C(m).
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Let logU ′ be the inverse image of U ′ ⊂ C(m). By the Baker-Brumer theorem of
Vincent Bosser (see appendix) the natural map

A/P ⊗Fq logU ′ → (A/P ) · logU ′

is an isomorphism. (In the target of this map we consider A/P as a subring of AP ).
Now let χ : ∆→ (A/P )× be an even character. Then

eχ(A/P ⊗Fq U ′)
is nonzero, and hence its image in logU ′ is nonzero. Since eχm is free of rank one
over AP , the theorem follows. �

Let L̄ ⊂ C(OK,P ) be the topological closure of L∩m. Then L̄ is an AP [∆]-module
and L̄ ⊂ Ū with finite quotient.

Proposition 9.8. Let χ : ∆→ A×P be a homomorphism. Then

eχL̄ = LP (1, χ) · eχC(m)

as AP -submodules of C(m).

Proof. For m ≥ 1 consider the series

Lm,P :=
∑

σ∈∆

σ(λ)m


∑

n≥0

∑

a∈A+,n,σ

1

a


 .

Here A+,n,b is the set of monic polynomials in A of degree n which reduce modulo
P to σ ∈ (A/P )×. By [1, Proposition 12] this series converge P -adically to an
element of m and we have the remarkable identity

expC Lm,P = expC Lm for all m ≥ 1.

Note that this is an identity in C(OK), but that a priori the left-hand side is P -adic
and lives in C(m) whereas the right hand-side is ∞-adic and lives in C(K∞).

We have ∑

m≥1

A expC Lm ⊂ L ∩m

and by [1, Proposition 9] the quotient is annihilated by P − 1. Taking topological
closures we find

L̄ =
∑

m≥1

AP expC Lm,P

as AP -modules.
By exactly the same reasoning as in Proposition 7.3 we have for all m ≥ 1 and

for all χ : ∆→ A×P that
eχLm,P = LP (1, χ)eχλ

m.

Since the AP -module C(m) is generated by (λm)m≥1 and since expC defines an
isomorphism m→ C(m) of AP [∆]-modules, we conclude

eχL̄ = LP (1, χ)eχC(m). �
Corollary 9.9. LP (1, χ) = 0 if and only if χ is odd. �

Now for even χ by Theorem 9.3 we have

lengthAP eχ(AP ⊗A H(OK)) = lengthAP
eχŪ
eχL̄

.

Together with the above proposition this proves Theorem D:
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Theorem 9.10. Let χ : ∆→ A×P be even. Then LP (1, χ) 6= 0 and

lengthAP eχ (AP ⊗A H(OK)) + lengthAP eχ
C(m)

Ū = vP (LP (1, χ)).

�
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APPENDIX:
A P -ADIC BAKER’S THEOREM FOR CARLITZ LOGARITHMS

VINCENT BOSSER

1. Notation and statement of the Theorem

We denote byN = {0, 1, . . .} the set of nonnegative integers. We write A = Fq[T ]
and k = Fq(T ). Let P ∈ A be an irreducible polynomial of degree d ≥ 1, let kP
be the completion of k at P , let CP be the completion of an algebraic closure of
kP , and let k̄ ⊂ CP be the algebraic closure of k in CP . We denote by v = vP the
valuation on CP corresponding to P normalized by vP (P ) = 1, and by | · | = | · |P
the absolute value on CP defined by |z| = q−vP (z). We denote by Φ : A → k{τ}
the Carlitz module and by

(1) e(X) =
∑

i≥0

Xqi

Di
∈ k[[X]]

the Carlitz exponential series. Let ρ := q−1/(q
d−1) be the convergence radius of the

series (1), and put
Dρ := {z ∈ CP | |z| < ρ}.

We know that e(z) is convergent in CP if and only if z ∈ Dρ, and that the series
(1) induces a bijection (the P -adic Carlitz exponential)

e : Dρ → Dρ.

The inverse map will be denoted by Log (P -adic Carlitz logarithm).
The functions e and Log satisfy the following properties:

∀z ∈ Dρ, |e(z)| = |z|,
∀a ∈ A,∀z ∈ Dρ, e(az) = Φa(e(z)),

and

(2) ∀a ∈ A,∀z ∈ Dρ, Log(Φa(z)) = aLog(z).

The aim of this appendix is to give a proof of the following theorem:

Theorem 1. Let n ≥ 1, and let α1, . . . , αn be n elements of Dρ∩ k̄. If the numbers
Logα1, . . . ,Logαn are linearly independent over k, then they are linearly indepen-
dent over k̄.

This theorem is an analogue of a theorem of Brumer for p-adic logarithms in
characteristic zero [3], which was itself an analogue of a theorem of Baker [1] for
usual complex logarithms. Many generalizations and improvements of the results
of Baker are known nowadays in characteristic zero. The interested reader might
consult e.g. the first three chapters of the book [9] as well as [8], [7], [4] for an
overview of known results.

1
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In the framework of Drinfeld modules, it seems that only results for logarithms
in C∞ (where ∞ = 1/T ) have been published yet. The first analogue of Baker’s
theorem is due to Yu [10] for an arbitrary Drinfeld module defined over k̄, but under
a separability condition. This condition was removed for CM-Drinfeld modules in
[6], and then in full generality independently in [5] and [11]. A (quantitative)
generalization of these results is established in [2].

Here we will consider for simplicity Carlitz-logarithms, and we will prove only a
qualitative version of the so-called “homogeneous case” of the P -adic Baker’s theo-
rem. There is no doubt that one could obtain quantitative and nonhomogeneous1

results for an arbitrary Drinfeld module defined over k̄, e.g. using the methods of
[11] or [2]. However, the proof would be much more complicated.

We will give here a proof of Theorem 1 as self-contained as possible. We will
follow the exposition given in characteristic zero in [8, Section 6.3]. This proof is
very close to the proof of [6], but we use the method of “interpolation determinant”
instead of using an auxiliary function constructed from a “Siegel’s Lemma”. As in
[8] or [6], we will first show (in Section 2) that it suffices to prove a weak form of
Theorem 1. Then, in Section 3, we prove this weak version of Baker’s theorem.

2. A weak version of Baker’s theorem

In this section, we show that Theorem 1 follows from the following result:

Theorem 2. Let n ≥ 1 be an integer, let β1, . . . , βn be n elements of k̄ such
that 1, β1, . . . , βn are k-linearly independent, and such that |βi| ≤ 1 for all i.
Let further α1, . . . , αn+1 be n + 1 elements of Dρ ∩ k̄. Assume that the numbers
Logα1, . . . ,Logαn+1 are linearly independent over k. Then

Logαn+1 − (β1 Logα1 + · · ·+ βn Logαn) 6= 0.

Proof of Theorem 1, assuming Theorem 2. Suppose that Theorem 1 is false. Then
there exist an integer n ≥ 1 and elements α1, . . . , αn ∈ k̄ ∩ Dρ such that Logα1,
. . . , Logαn are k-linearly independent but k̄-linearly dependent. Choose n minimal
satisfying this condition. We note that n ≥ 2. Let β1, . . . , βn ∈ k̄, not all zero, such
that

(3)
n∑

i=1

βi Logαi = 0.

We claim that the minimality of n implies that β1, . . . , βn are k-linearly indepen-
dent. Indeed, suppose that they are not. Then, by renumbering if necessary, we
have a relation

(4) anβn =

n−1∑

i=1

aiβi

with ai ∈ A (1 ≤ i ≤ n) and an 6= 0. Then (3) yields

(5)
n−1∑

i=1

(ai Logαn + an Logαi)βi = 0.

1The nonhomogeneous version of Baker’s theorem would state that under the assumptions of
Theorem 1, the n+ 1 numbers 1,Logα1, . . . ,Logαn are linearly independent over k̄.
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Now, by the functional equation (2), we have

ai Logαn + an Logαi = Log(Φai(αn) + Φan(αi)) = Logα′i

with α′i = Φai(αn) + Φan(αi) ∈ k̄ ∩ Dρ. Moreover, Logα′1, . . . ,Logα′n−1 are k-
linearly independent. So these elements are k̄-linearly independent by minimality
of n. The relation (5) then implies β1 = · · · = βn−1 = 0, hence βn = 0 by (4),
which is a contradiction. Hence β1, . . . , βn are k-linearly independent as claimed.
Applying now Theorem 2 to the numbers Logα1, . . . ,Logαn, we see that (3) cannot
hold. This is a contradiction. �

3. Proof of Theorem 2

This section is devoted to the proof of Theorem 2. The argument follows the
same lines as a standard transcendence proof. We assume that the conclusion of
Theorem 2 is false and we try to derive a contradiction. For this, we construct first
(in Sections 3.1 and 3.2) a certain non-zero algebraic number ∆. This number is
defined as a minor of order L of a certain matrix having L rows. The fact that such
a minor exists (i.e. is not zero) rests on the use of a zero estimate due to Denis. In a
second step (Section 3.3), we find an upper bound for |∆| using analytic arguments
(namely, a Schwarz Lemma). In a third step (Section 3.4), we find a lower bound
for |∆|, using the fact that ∆ is algebraic and non zero: we use here the so-called
Liouville’s inequality. The upper bound and the lower bound being contradictory,
we get the desired contradiction.

From now on, we suppose that we are given elements α1, . . . , αn+1, β1, . . . , βn in
k̄ as in Theorem 2. For 1 ≤ i ≤ n+ 1 we define λi := Logαi and we suppose that
the following equality holds:

(6) λn+1 = β1λ1 + · · ·+ βnλn.

We denote by c0, c1, . . . , c4 fixed real numbers depending only on q, n and α1, . . . , αn+1,
β1, . . . , βn (such numbers will be called “constants”). These numbers will appear
during the proof and could be made explicit, but we did not carry out this task.

3.1. Construction of a matrix M. We begin by defining positive integers T1,
T2, S as follows: S is a constant chosen sufficiently large, and

(7) T1 = bq(1+1/n)S/S3c, T2 = S2n.

Here, “sufficiently large” means that all the inequalities that will occur in the proof
below are satisfied. In particular, we note that the choice of S depends on the
constants c0, . . . , c4 defined before. As for the choice (7), it is imposed by the
various constraints on S, T1, T2 that will appear during the proof (see Remark 1).

We introduce the following notation. For any s = (s1, . . . , sn+1) ∈ An+1, we
define

deg s := max
1≤i≤n+1

{deg si}

and we define the two sets

T = {(τ1, . . . , τn, t) ∈ Nn ×N | τ1 + · · ·+ τn ≤ T1, 0 ≤ t ≤ T2},
and

S = {s ∈ An+1 | deg s ≤ S}.
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For every (τ , t) ∈ T with τ = (τ1, . . . , τn), we consider the function f(τ ,t) : Dn
ρ →

CP defined by

(8) f(τ ,t)(z1, . . . , zn) = zτ11 . . . zτnn
(
e(

n∑

i=1

λizi)
)t
,

and for any s ∈ S we define the algebraic points

(9) ζs = (s1 + sn+1β1, . . . , sn + sn+1βn) ∈ k̄n.
Let L be the cardinal of T . We have

(10) L =

(
T1 + n

n

)
(T2 + 1).

We choose any ordering of the sets T and S, and we consider the matrix

M =
(
f(τ ,t)(ζs)

)
(τ ,t),s

where the rows are indexed by (τ , t) ∈ T and the columns are indexed by s ∈ S.
We note that the entries of M are actually elements of k̄. Indeed, writing

ζs = (ζ
(1)
s , . . . , ζ

(n)
s ) and using the hypothesis (6), we have
n∑

i=1

λiζ
(i)
s =

n∑

i=1

λisi + (
n∑

i=1

λiβi)sn+1 =
n+1∑

i=1

λisi,

hence

e
( n∑

i=1

λiζ
(i)
s

)
=

n+1∑

i=1

Φsi(αi) ∈ k̄

and thus

(11) M =
(

(s1 + sn+1β1)τ1 · · · (sn + sn+1βn)τn
(n+1∑

i=1

Φsi(αi)
)t)

(τ ,t),s

has algebraic entries.

3.2. Construction of a minor ∆. Observe that by (7) and (10) we have L ≤
2n+1Tn1 T2 < q(S+1)(n+1) = cardS, so the rank of the matrixM is at most L. The
aim of this section is to prove that this rank is exactly L.

Proposition 1. The rank of the matrixM is equal to L.

To prove this proposition we will use a zero estimate due to Denis [6]. To
state his result, we need to introduce further notation. If N ≥ 1 is an integer,
let us denote by EndFq−lin(GN

a ) the Fq-algebra of Fq-linear endomorphisms of
GN
a , and by F : (x1, . . . , xN ) → (xq1, . . . , x

q
N ) the Frobenius map on GN

a . Recall
that a T -module of dimension N and rank r ≥ 0 is a pair G = (GN

a ,Ψ), where
Ψ : A → EndFq−lin(GN

a ) is an injective homomorphism of Fq-algebras such that
Ψ(T ) = a0F

0 + · · ·+ arF
r, where ai ∈MN (CP ) (0 ≤ i ≤ r), ar 6= 0, and the only

eigenvalue of a0 is T . When N = 1 and r = 0, we get the “trivial” T -module, whose
action on Ga is the usual scalar action.

A morphism ϕ : G1 → G2 of T -modules is a morphism of algebraic groups that
commutes with the actions of A. It is called an isogeny if it is surjective with finite
kernel. We call sub-T -module of a T -module (GN

a ,Ψ) any connected algebraic
subgroup H of GN

a such that Ψa(H) ⊂ H for all a ∈ A. If H is such a sub-T -
module, we define degH as the projective degree of its Zariski closure H in PN via
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the embedding GN
a ↪→ PN . A T -module (GN

a ,Ψ) is said to be simple if its only
sub-T -modules are {0} and GN

a .
If G1 = (Gn1

a ,Ψ1) and G2 = (Gn2
a ,Ψ2) are two T -modules, we will denote by

G1 × G2 the T -module (Gn1+n2
a ,Ψ1 × Ψ2), where Ψ1 × Ψ2 is the diagonal action

on Gn1
a ×Gn2

a . We define similarly a product of finitely many T -modules. In the
zero estimate below, we will consider a product of T -modules G = Gn1

1 × · · · ×
Gnm
m , where Gi = (Gdi

a ,Ψi) is a T -module of dimension di. We will denote by
CP [Xi,1, . . . , Xi,nidi ] the coordinate ring of Gni

i , and by Xi = (Xi,1, . . . , Xi,nidi)
its set of variables. If Q ∈ CP [X1, . . . , Xm] is any polynomial, we will denote by
degXi

Q its partial degree with respect to Xi. Finally, if (GN
a ,Ψ) is a T -module and

Γ = {γ1, . . . , γg} is a finite set of points of CN
P , we denote, for any integer S ≥ 0,

Γ(S) :=

{
g∑

i=1

Ψsi(γi) | s1, . . . , sg ∈ A,deg si ≤ S
}
.

We can now state the result of Denis.

Theorem 3 (Zero estimate). Let Gi = (Gdi
a ,Ψi) (1 ≤ i ≤ m) be m T -modules

of dimension di and rank ri ≥ 0. Suppose that Gi is simple for all i and that
G1, . . . , Gm are pairwise non-isogeneous. Let n1, . . . , nm be positive integers, and
put G = Gn1

1 × · · ·×Gnm
m , N = d1n1 + · · ·+ dmnm. Let further S ≥ 0 be an integer

and Γ a finite set of points in CN
P . Suppose that there exists a non-zero polynomial

Q ∈ CP [X1, . . . , Xm] which vanishes on Γ(S), and such that degXi
Q ≤ Li (1 ≤

i ≤ m), where Li ∈ Z>0. Then there exist sub-T -modules Hi of Gni
i such that the

product H = H1 × · · · ×Hm is distinct from GN
a and such that

card
(
(Γ(S −N + 1) +H)/H

)
· (dimH)!

(dimH1)! . . . (dimHm)!
·
m∏

i=1

degHi

≤ N !

(n1d1)! . . . (nmdm)!
·
m∏

i=1

degGni
i .

m∏

i=1

(κiLi)
dini−dimHi ,

where κi = qri(N−1).

Proof. See [6, Theorem 2]. �

Proof of Proposition 1. Suppose that rank(M) < L. Then there exists a non-trivial
linear combination of the rows ofM which vanishes, that is, by (11),

∑

(τ ,t)

λ(τ ,t)(s1 + sn+1β1)τ1 . . . (sn + sn+1βn)τn
(n+1∑

i=1

Φsi(αi)
)t

= 0

for all s ∈ S. Define the following points of k
n+1

:

γ1 = (1, 0, . . . , 0, α1), . . . , γn = (0, . . . , 0, 1, αn), γn+1 = (β1, . . . , βn, αn+1),

and consider the T -module G = Gn1 × G2, where G1 is the trivial T -module of
dimension 1 and where G2 = (Ga,Φ) is the Carlitz module. We note that G1 and
G2 are simple and non-isogeneous. Moreover, if Ψ denotes the action of G, we have,
for all s ∈ S,

Ψs1(γ1) + · · ·+ Ψsn+1
(γn+1) = (s1 + sn+1β1, . . . , sn + sn+1βn,

n+1∑

i=1

Φsi(αi)).
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Thus, we see that the non zero polynomial

Q(X1, . . . , Xn, Y ) =
∑

(τ ,t)

λ(τ ,t)X
τ1
1 . . . Xτn

n Y t

vanishes on Γ(S). Moreover, degX ≤ T1 and degY Q ≤ T2. Applying Theorem 3,
we find that there is a sub-CP -vector space H1 ⊂ Cn

P and a connected algebraic
subgroup H2 ⊂ Ga such that H = H1 ×H2 6= Gn+1

a , and

(12) card
(
(Γ(S − n) +H)/H

)
≤ c0Tn−dimH1

1 T 1−dimH2
2 .

Suppose first that H2 = {0}. Then clearly, by considering the last coordinate only,

(13) card
(
(Γ(S − n) +H)/H

)
≥ card{

n+1∑

i=1

Φsi(αi) | deg si ≤ S − n}.

Since
∑n+1
i=1 Φsi(αi) = e(

∑n+1
i=1 siλi) and e : Dρ → Dρ is injective, the k-linear

independence of λ1, . . . , λn+1 implies that the points
∑n+1
i=1 Φsi(αi), deg si ≤ S−n,

are all distincts. Hence (12) and (13) yield

q(S−n+1)(n+1) ≤ c0Tn1 T2,
which is a contradiction by the choice of the parameters (7) (recall that S is chosen
sufficiently large).

Suppose now that H2 = Ga. Since H = H1 ×H2 6= Gn+1
a , we have dimH1 ≤

n− 1. Let us define

∆[S − n] := {(s1 + sn+1β1, . . . , sn + sn+1βn) | deg si ≤ S − n}

= {
n+1∑

i=1

siξi | deg si ≤ S − n},

where (ξ1, . . . , ξn) is the canonical basis of Cn
P and ξn+1 = (β1, . . . , βn). We have

card
(
(Γ(S − n) +H)/H

)
= card

(
(∆[S − n] +H1)/H1

)
.

Put r = dim(Cn
p/H1) and ρ = dimk(< ξ1, . . . , ξn+1 >k +H1/H1), where <

ξ1, . . . , ξn+1 >k denotes the sub-k-vector space of Cn
P spanned by ξ1, . . . , ξn+1. We

claim that ρ ≥ r+1. Indeed, there are already at least r elements among ξ1, . . . , ξn
that are k-linearly independent modulo H1, say ξi1 , . . . , ξir . Hence ρ ≥ r. Suppose
that we have ρ = r. Then dimk(< ξ1, . . . , ξn >k +H1/H1) = r and the vector space
Cn
P /H1 is defined over k, hence H1 is also defined over k. Now, ξi1 , . . . , ξir , ξn+1

are k-linearly dependent modulo H1, so we can write ξn+1 =
∑r
`=1 µi`ξi` +h, where

µi` ∈ k and h ∈ H1. Thus we have (β1−µ1, . . . , βn−µn) ∈ H1, where we have put
µi = 0 if i 6= {i1, . . . , ir}. But then the point (β1 − µ1, . . . , βn − µn) is contained in
a hyperplane of Cn

P defined over k, which contradicts the k-linear independence of
1, β1, . . . , βn. Hence ρ ≥ r + 1, as claimed. It readily follows from this that

card
(
(Γ(S − n) +H)/H

)
= card

(
(∆[S − n] +H1)/H1

)
≥ q(S−n+1)(r+1),

hence (12) yields
qS−n+1 ≤ c0(T1/q

S−n+1)r.

Since T1 ≥ qS−n+1, we get qS−n+1 ≤ c0(T1/q
S−n+1)n, which again contradicts the

choice of the parameters (7). �
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It follows from Proposition 1 that there is a L×L minor ofM which is not zero.
We choose L column indices s1, . . . , sL of S such that the corresponding minor does
not vanish. For ease of notation, in the sequel we rename the points ζs1 , . . . , ζsL
as ζ1, . . . , ζL, and similarly, we rename the functions {f(τ ,t) | (τ , t) ∈ T } as fλ,
1 ≤ λ ≤ L. We set

∆ := det(fλ(ζµ))1≤λ,µ≤L.

3.3. Upper bound for |∆|. In this section we will prove:

Proposition 2. Let E0 = ρ/max1≤i≤n{|λi|}. Then we have

logq |∆| ≤ −
n

2e
L1+1/n logq E0.

We will need the ultrametric version of the Schwarz lemma. If R > 0 is a real
number, we define D(0, R) = {z ∈ CP | |z| < R}. We will say that a function
ψ : D(0, R)→ CP is analytic in D(0, R) if we can write ψ(z) =

∑
n≥0 anz

n for all
z ∈ D(0, R). In that case, if r is any real such that 0 < r < R, we define

|ψ|r := sup{|ψ(z)| | |z| ≤ r}.
Lemma 1 (Schwarz Lemma). Let 0 < r ≤ R be two positive real numbers in the
group of values |C×P | = qQ, and let ψ be a non zero analytic function in a disk
containing strictly D(0, R). If M = ordz=0 ψ(z), then

|ψ|r ≤
( r
R

)M
|ψ|R.

Proof. Define ϕ(z) = z−Mψ(z). By the maximum modulus principle, we have
|ϕ|r = r−M |ψ|r and |ϕ|R = R−M |ψ|R. The lemma now follows from the obvious
inequality |ϕ|r ≤ |ϕ|R. �

Proof of Proposition 2. We introduce the following analytic function in one vari-
able, for |z| small :

D(z) = det(fλ(zζµ))1≤λ,µ≤L.

We claim that this function is actually analytic in the disk D(0, E0). Indeed, if
ζµ = (ζµ,1, . . . , ζµ,n), one readily checks from the definition of the points ζµ (see
(9)) and from the fact that |βi| ≤ 1 for all i, that |ζµ,i| ≤ 1 for all i, hence
|∑n

i=1 λiζµ,i| ≤ maxi |λi| and thus z(
∑n
i=1 λiζµ,i) ∈ Dρ if |z| < E0. Coming back

to the definition of the functions fλ (see (8)), this proves the claim. We have
moreover, if λ corresponds to the n+ 1-tuple (τ1, . . . , τn, t) ∈ T :

(14) |fλ(zζµ)| ≤ |z|τ1+···+τnρt for all z ∈ D(0, E0).

We apply now the Schwarz Lemma to the function D with r = 1 and R ∈ qQ such
that r ≤ R < E0. We obtain

|∆| = |D(1)| ≤ R−M |D|R,
where M = ordz=0D(z). We deduce from (14) the estimate |D|R ≤ RLT1 , hence
|∆| ≤ R−M+LT1 .

Let us estimate from below the multiplicity M at 0 of the function D(z). We
follow here almost verbatim [8], Lemmas 6.4 and 6.5. By multilinearity of the
determinant and by expanding each function fλ at (0, . . . , 0) as fλ(z) =

∑
i fλ,iz

i

(where zi means as usual zi11 . . . zinn when z = (z1, . . . , zn) and i = (i1, . . . , in)), we
see that we may assume that each entry of D(z) is a monomial of the form z‖i‖ζiµ,
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where ‖i‖ := i1 + · · · + in. In that case, we have the commun factor z‖i‖ in each
row indexed by i. Moreover, we may assume that two different rows correspond to
two different indices i, because otherwise the two rows would be identical and the
corresponding determinant would be zero. We deduce from this that the vanishing
order of D(z) at 0 is at least equal to

Θn(L) := min{‖i1‖+ · · ·+ ‖iL‖},
where the minimum runs over all the L-tuples (i1, . . . , iL) ∈ Nn × · · · ×Nn which
are pairwise distinct. Lemma 6.5 of [8] yields the estimate Θn(L) > (n/e)L1+1/n as
soon as L ≥ (4n)2n. By the choice (7), this latter condition is satisfied. Summing
up, we have obtained

logq |∆| ≤ (LT1 −
n

e
L1+1/n) logq R ≤ −

n

2e
L1+1/n logq R

(since T1 ≤ (n/2e)L1/n by (7)). Letting now R tend to E0, we obtain the proposi-
tion. �

3.4. Lower bound for |∆| and conclusion. In this section we prove the following
lower bound for |∆|, from which we derive the desired contradiction.

Proposition 3. The following inequality holds:

logq |∆| ≥ −c2LS(T1 + T2q
S).

To prove this proposition we will use the "Liouville’s inequality". We will need
the notion of height of an algebraic point of PN (k̄). We recall for convenience the
definition and the basic properties we will use.

If (ξ0 : ξ1 : · · · : ξN ) is a point of PN (k̄), we define its height by the formula

(15) h(ξ0 : ξ1 : · · · : ξN ) =
1

[K : k]

∑

w∈MK

dw max{−w(ξ0), . . . ,−w(ξN )},

where K/k is any finite extension such that ξ0, . . . , ξN ∈ K, MK is the set of non
trivial places of K, dw is the degree over Fq of the residue class field at w, and the
valuation w is normalized so that w(K×) = Z. The properties of the valuations
show that this definition does not depend on the choice of K containing ξ0, . . . , ξN ,
and the product formula shows that it is independent of the chosen projective
coordinates (ξ0, . . . , ξN ) for the point. If ξ is an element of k̄, we define h(ξ) by
h(ξ) := h(1 : ξ).

Lemma 2. Let f ∈ A[X1, . . . , Xn+1, Y1, . . . , Yn] be any non zero polynomial. We
have

h(f(α1, . . . , αn+1, β1, . . . , βn)) ≤ c1 deg f + δ(f),

where c1 = h(1 : α1 : · · · : αn+1 : β1 : · · · : βn) and where δ(f) denotes the maximum
of the degrees (in T ) of the coefficients of f .

Proof. Let K = k(α1, . . . , αn+1, β1, . . . , βn). One easily checks that for any place
w of K, one has

max{0,−w(f(α1, . . . , αn+1, β1, . . . , βn))}
≤ deg f max{0,−w(α1), . . . ,−w(αn+1),−w(β1), . . . ,−w(βn)}+ cw
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with cw = 0 if w - ∞ and cw = ewδ(f) if w | ∞ (here ew is the ramification index
at w). The lemma follows from this and the definition of the height (15). �

Corollary 1 (Liouville’s inequality). With the notations of Lemma 2, we have, if
f(α1, . . . , αn+1, β1, . . . , βn) 6= 0,

logq |f(α1, . . . , αn+1, β1, . . . , βn)| ≥ −[K : k](c1 deg f + δ(f)),

where K = k(α1, . . . , αn+1, β1, . . . , βn).

Proof. Put ξ := f(α1, . . . , αn+1, β1, . . . , βn). Since (1 : ξ) = (ξ−1 : 1), we have
h(ξ) = h(ξ−1). Hence

logq |ξ−1| = −v(ξ−1) ≤ max{0,−v(ξ−1)} ≤ [K : k]h(ξ−1) = [K : k]h(ξ).

Now, Lemma 2 yields the result. �

Proof of Proposition 3. From the definition of ∆ and the expression (11), we see
that we can write ∆ = f(α1, . . . , αn+1, β1, . . . , βn), where f is a polynomial of
A[X1, . . . , Xn+1, Y1, . . . , Yn] of the form

f(X1, . . . , Xn+1, Y1, . . . , Yn) = det
(

(s1+sn+1Y1)τ1 . . . (sn+sn+1Yn)τn
(n+1∑

i=1

Φsi(Xi)
)t)

(τ ,t),s

((τ , t) runs over all the elements of T and s runs over a subset of S of cardinality
L). We have, since deg(Φsi(Xi)) = qdeg si ≤ qS :

degX f ≤ LT2qS and degY f ≤ LT1.
Moreover, the coefficients of each polynomial Φsi(Xi) are elements of A of degree in
T at most qdeg si deg si ≤ SqS , hence the coefficients of f have a degree in T at most
L(T1S+T2Sq

S). It follows from these estimates and from Liouville’s inequality that

logq |∆| ≥ −c2LS(T1 + T2q
S).

�

End of the proof of Theorem 2. By Propositions 2 and 3, we have:
n

2e
L1+1/n logq E0 ≤ c2LS(T1 + T2q

S)

or
L1/n ≤ c3S(T1 + T2q

S).

Since by (10) we have L ≥ Tn1 T2/n!, we obtain

T1T
1/n
2 ≤ c4(T1S + T2Sq

S).

But this inequality contradicts the choice of the parameters (7). Thus the assump-
tion (6) was false, which completes the proof of Theorem 2. �

Remark 1. If we keep track of all the inequalities that the parameters S, T1 and
T2 should satisfy in order that the above proof works, we see that these parameters
have to be sufficiently large and should satisfy the following three conditions: (i)
T1 ≥ qS−n+1, (ii) c0Tn1 T2 < q(S−n+1)(n+1) and (iii) c4(T1S + T2Sq

S) < T1T
1/n
2 .

The definition (7) has been chosen to fulfill these conditions.
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